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Slider-block models are often used to simulate earthquake dynamics. However, the models’ origins are more
conceptual than analytical. This study uses Navier’s equations of an elastic bulk to derive a one-dimensional
slider-block model, the Burridge-Knopoff model. This model exhibits a critical phase transition by varying the
friction parameter. Accurate analytical estimates are made of event size limits for the small scale, large scale,
and intermediate dynamic phases. The absence of large scale quasiperiodic delocalized events is noted for the
parameter set investigated here. The time intervals between large scale events are approximately exponentially
distributed for the system in its critical state, in agreement with the theory of nonequilibrium critical systems
and earthquake dynamics.
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I. INTRODUCTION

The Burridge-Knopoff �BK� model is �1� a conceptual
representation of an earthquake fault. The model consists of
a linear array of N blocks, resting on a frictional surface,
coupled to nearest neighbors by elastic springs with spring
constant kc, and each block connected via a leaf spring with
spring constant kt to a rigid plate moving at a constant ve-
locity �see �2��. The area of the frictional surface in contact
with the blocks is analogous to the fault. Elastic coupling
between blocks represents the elastic nature of the lithos-
phere on the time scale of earthquake behavior. The con-
stantly moving rigid plate is a representation of a tectonic
plate, slowly moving relative to a neighbor plate, increasing
the strain near the fault, the leaf springs.

Numerical studies by Carlson et al. �3–8� based on the
BK model have observed a power law moment �event size�
probability density distribution �PDD� in large agreement
with earthquake behavior: the Gutenberg-Richter �GR� law
�9�. A finitely driven homogenous BK model revealed that
for the parameter regime investigated three distinct classes of
events could be identified �5�: localized microscopic events,
large but localized events, and delocalized events. The local-
ized events obey a power law probability density distribution
consistent with the GR law. In contrast, delocalized events
cause a deviation from this power law with an excess of
large scale events. These quasiperiodic �4� delocalized
events, also observed in an infinitely slowly driven system
�8�, occur when the slip zone exceeds a delocalization length
scale and the exponentially growing slip rates can no longer
be retarded by the friction. It was noted that events begin to
run into each other upon variation of the frictional parameter
�5� and at the onset of this behavior a power law without
large scale excess is observed. This power law, however,

demonstrates a smaller exponent than is compatible with the
GR law.

In addition, Vieira et al. �10� have reported a critical tran-
sition, albeit with large scale excess, from stick slip to con-
tinuous sliding through a critical point in a finitely driven
system.

Transitions in stick slip systems are not only observed in
the BK model. Distinct dynamic phases are noted in an ex-
perimental spring-block system by Johansen et al. �11�,
which can also produce power law and exponential moment
PDDs. Exponential PDDs for the moment may also be seen
upon analysis of the BK model �12�, thought to be due to
another transition tuned by varying the ratio kc /kt.

What follows is a detailed establishment of the BK model
from the theory describing a continuous elastic medium in
contact with a rigid frictional surface. Using the same fric-
tion law as Carlson et al. �8�, estimates of the allowed range
of event sizes for limits of the friction are calculated, corre-
sponding to the dynamic phases observed.

II. NAVIER’S EQUATIONS
AND THE BURRIDGE-KNOPOFF MODEL

The movement of the tectonic plates can be described by
mechanical equations of motion. A summary of the deriva-
tion of equations of motion is now presented, showing how a
variant of the BK model may arise from an elastic bulk me-
dium in contact with a frictional surface.

The tectonic plate can be represented by a continuous
elastic bulk in frictional contact with a rigid frictional sur-
face, as envisioned by the BK model. The equations describ-
ing the elastic bulk are given by Navier’s equations �13�, Eq.
�1�

�2u�r,t�
�t2 = �� + �

�
� � �� · u�r,t�� + ��

�
��2u�r,t� +

f

�
,

�1�

where � and � are Lamé parameters, � is the mass density, r
is the displacement vector, u is the material displacement
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from equilibrium, and f is a net body force, e.g., gravity, and
t represents time. The assumptions made to obtain Eq. �1� are
that the medium: is isotropic �no layering present in the
bulk�; is adequately modeled by a linear elastic constitutive
law; has a constant density in space and time and the strain
tensor is symmetric.

The Burridge-Knopoff �BK� model may arise as an ap-
proximation of these equations of motion. An earthquake
system consists of a tectonic plate moving at a constant rate
in relation to another plate. The interface between these two
plates is described as the fault. If the two plates in contact are
not moving in concert there will be a shear stress due to
friction experienced on the fault plane. In order to model this
system consider a configuration whereby a finite elastic bulk
�tectonic plate� is in contact with a rigid frictional plane
�fault� with the top surface of the elastic bulk moving with a
velocity � as in Fig. 1. The displacement u is a three-
dimensional vector field and would be too computationally
intensive to solve numerically for the purposes of this study,
thus the equations need to be simplified. The approach to be
taken involves first reducing the dimensionality of the prob-
lem. Here r has the orthogonal components x, y, and z, and
the fault is defined as being the plane where y=0. The first
assumption is that the displacement field is independent of z,
which represents depth into the fault �see Fig. 1�. With this
assumption the model is representative of large earthquakes
whose slip displacement at the fault spans the schizosphere.
In addition, it is assumed that net body forces are negligible,
f=0. The assumption is also made that slip only occurs in the
direction of driving which will be defined as being the x
direction, along the fault, thus u has the form

u = „u�x,y,t�,0,0… .

Substituting this into Eq. �1� yields

�2u�x,y,t�
�t2 =

� + 2�

�

�2u�x,y,t�
�x2 +

�

�

�2u�x,y,t�
�y2 . �2�

It is desirable to obtain the solution on the fault itself, y=0.
The bulk affected by the seismic motion is assumed to be
thin such that strain is localized to a shearing zone within �y
of the fault plane, a property of any given fault. The bound-
aries are at the fault, y=0, and the edge of the shear zone

y=�y, the term
�2u�x,0,t�

�y2 may be simplified using a Taylor
expansion of u�x ,�y , t� leading to

�2u�x,0,t�
�y2 �

2

�y2 �u�x,�y,t� − u�x,0,t�� −
2

�y

�u�x,0,t�
�y

.

�3�

The initial and boundary conditions of Eq. �4� are used,

u�x,�y,t� = �t , �4a�

�u�x,0,t�
�y

=
1

2�
� , �4b�

�u�− L/2,y,t�
�x

= 0, �4c�

�u�L/2,y,t�
�x

= 0, �4d�

u�x,y,0� = g�x,y� , �4e�

where ± L
2 are the boundaries in the x direction and, here, the

function g�x ,y� is taken to be a spatially uncorrelated func-
tion with magnitude �g�x ,y� � �1. � is the shear stress at the
boundary in contact with the frictional surface.

Taking each condition in turn, Eq. �4a� represents the bulk
motion of the tectonic plate moving at a constant velocity �.
Equation �4b� implies simple shearing �13� where the shear
strain is directly proportional to the shear stress friction at
the boundary y=0 �the fault�. Equations �4c� and �4d� define
open boundary conditions at the boundaries x= ± L

2 , i.e., the
elastic bulk does not extend past the boundaries. Finally, the
initial condition of Eq. �4e� gives the initial displacement of
all points.

Letting u�x ,0 , t� be represented by u�x , t�, Eq. �2� at the
boundary

�2u�x,t�
�t2 =

� + 2�

�
	 �2u�x,t�

�x2 
 +
2�

��y2 ��t − u�x,t�� −
�

��y
.

�5�

Equation �5� may be separated into two coupled differen-
tial equations

�

�t
� �u

�t
� = F −

�

��y
, �6a�

�F

�t
=

� + 2�

�

�2

�x2� �u

�t
� +

2�

��y2	� − � �u

�t
�
 . �6b�

If the system defined by Eq. �6� is to be representative of
earthquakes, stick slip behavior is expected, and so two time
measures can be defined corresponding to each state: activity
and quiescence. This can be achieved by defining the time t
thus

t = 	ata = 	qtq,

where 	a and 	q are the scales of the time measures ta and tq
corresponding to activity and quiescence respectively.

Equation �6� may be nondimensionalized in each of the
states �active, quiescent� using Eq. �7�.

FIG. 1. Schematic of the earthquake system. � is the velocity of
the top surface of the bulk in the direction of the x axis.
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x = lxx
*, �7a�

y = y*�y , �7b�

t = 	ata = 	qtq, �7c�

� =
lx

	q
, �7d�

�� + 2�

�
=

lx

	a
, �7e�

�2�

�
=

�y

	a
, �7f�

�u

�t
=

lx

	a
e , �7g�

F =
lx

	a
2 f , �7h�

� =
�lx�y

	a
2 
 , �7i�

where lx is a length scale in the x dimension.
Rewriting Eq. �6� using Eq. �7� results in the nondimen-

sional set of equations for quiescence, Eq. �8�

	a

	q

�e

�tq
= f − 
 , �8a�

� f

�tq
=

	q

	a

�2e

��x*�2 + �1 −
	q

	a
e� . �8b�

This equation is written in terms of e and f . From Eq. �7g�, e
is the nondimensional velocity and from Eq. �7h�, f is the
nondimensional acceleration but can also be interpreted as
the nondimensional shear stress which is given by

��yF

�lx�y	a
−2 = f .

During quiescence, e=0 everywhere thus �2e
��x*�2 =0. In addi-

tion, the friction balances f such that there is no net shear
stress, otherwise the velocity would become nonzero, and the
quiescent time tq becomes an inappropriate measure. Hence,
for quiescence Eq. �8� reduces to

� f

�tq
= 1. �9�

Repeating the process of nondimensionalization during
activity in Eq. �6� using Eq. �7� �for activity t=	ata� leads to

�e

�ta
= f − 
 , �10a�

� f

�ta
=

�2e

��x*�2 + � 	a

	q
− e� . �10b�

For the slowly driven earthquake system, the time scale of
activity 	a is of the order of seconds and the time scale of
quiescence 	q is of the order of months/years. Hence,

tq

ta
=

	a

	q

= �
vp

�10−13�1, taking the values for the plate drift �

�10−9 ms−1 and the compressive wave speed vp�5
�103 ms−1. The limit

	a

	q
→0 leads to infinitely slow driving

and the system, during activity, is described by Eq. �11�

ė = f − 
 , �11a�

ḟ = e� − e . �11b�

Here the dots represent differentiation with respect to nondi-
mensional time during activity, ta, and the dashes differentia-
tion with respect to nondimensional space along the fault, x*.
Discretizing space leads to

ėi = f i − 
i, �12a�

ḟ i = kc�ei+1 + ei−1 − 2ei� − ei, �12b�

where kc= 1
��x*�2 , and the subscripts i refer to the ith grid

point, normally referred to as a block.
Importantly, Eq. �12� is almost identical to the traditional

BK model which can be written as follows:

ėi = f i − 
i, �13a�

ḟ i = kc�ei+1 + ei−1 − 2ei� − ktei. �13b�

Note that Eq. �12� suggests that kt of Eq. �13� should be such
that kt=1.

In other studies the ratio kc /kt has been an important pa-
rameter for the system dynamics �see for example �12��. In a
dimensional BK system this ratio is related to the shear
modulus �or rigidity�. In contrast, in the nondimensional sys-
tem the shear modulus is a constant and is independent of the
nondimensional numerical discretizations kc and kt. Note that
this does not imply that any choices of discretizations are
allowed. The system is being solved using a numerical
method and so the choice of spatial and temporal discretiza-
tions must be made to achieve numerical stability. This is
best accomplished by transmitting numerical information at
equal speeds in both x* and y* dimensions.

In order for the numerical signal speeds, �x*

�ta
and �y*

�ta
, to be

the same the spatial discretization �x* is made equal to the
shear zone width �y*�=1� and so kc=1. The time step, �ta, is
chosen such that some Courant-Friedrich-Lewy type condi-
tion is met, the details of which is dependent on the numeri-
cal method used to integrate the system of equations. When
solving with the fourth order Runge-Kutta method, a useful
guideline employed in simulations of the BK model here is
to choose the time step such that �ta�0.1.
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The model as defined by Eq. �12� is readily solved by
numerical techniques, but an understanding of the model’s
behavior in different parameter regimes is vital in under-
standing any emergent dynamics.

The frictional function used here �see Fig. 2� and by
Carlson et al. �8� is given by Eq. �14�, the Carlson and
Langer �CL� friction law


i� ei

v f
, f i� = 


�1−
�

�1+ei/�1−
�v f�
if ei � 0

�1 − 
� if ei = 0, f i � 1

f i if ei = 0, f i � 1.

�14�

The frictional drop 
 allows events to initiate abruptly with
an acceleration proportional to 
, and eliminates a strong
dependence of initial acceleration on the driving rate �8�. The
parameter v f is a characteristic velocity scale of the friction.
Also, this friction law prohibits slip in the direction opposite
to the driving.

Examining Eq. �12�, if the system is relaxed, i.e., all ei
=0, then the system does not change and it is entering a
quiescent period. The solution is started from an initially
heterogeneous state in which the blocks are attributed ran-
dom values of small magnitude for each f i, corresponding to
Eq. �4e�. During quiescence the system is described by Eq.
�9�, which states that the shear stress over the entire system
increases linearly in �quiescent� time tq. This can only occur
up to the time when an element of the system reaches the
threshold of friction and the system becomes active. During
a quiescent period the shear stress increases by an amount
�=
i

max−max�f i� for all f i �
i
max is the maximum of the fric-

tional function and max�f i� is the maximum shear stress in
the system�, i.e., the shear stress at all gridpoints is incre-
mented by the amount necessary to make the gridpoint near-
est to the slipping threshold move. The system then relaxes
until all ei are zero and this relaxation constitutes an event.
The process of incremental shear stress increase and relax-
ation is continued for 106 iterations for a catalogue of 106

events. This is the typical event catalogue size for experi-
mental results presented here.

III. ANALYTIC TREATMENT OF THE BK MODEL

A. Earthquake moment magnitudes in the BK model

The BK model is thought to be representative of the basic
mechanics of earthquake events. An important measure used

to characterize earthquakes is the moment M �9� representing
the net slip along the fault during an earthquake event, de-
fined by

M = �
t0

t0+�t �
A

��v�r,t��dAdt , �15�

where � is the shear modulus �also in Eq. �1��, v is the
velocity on the fault surface area A and the integrals are over
the duration of the event �t and the surface of the fault.
Using Eq. �7�, the dimensional moment M in the model may
be given by

M =
��z

2
��y

vp

vs
�2

Ml, �16�

where �z is the schizosphere depth, vp and vs are the primary
compressive wave speed and the secondary shear wave speed
respectively, and the nondimensional moment Ml is given by

Ml = �
D
�
i=1

N

eidta, �17�

where the integral is over the event duration D and the sum
is over the N gridpoints. Equation �16� allows the nondimen-
sional moments measured from the model dynamics to be
converted to the equivalent dimensional moment for a given
fault, i.e., a fault with given depth, shear zone width, shear
modulus, and wave speeds. The moment magnitude Mw may
then be obtained through the relationship of Eq. �18� �14�
where M is measured in newton meters

Mw = 2
3 log10�M� − 6. �18�

It is instructive to investigate the BK system’s allowed
maximum and minimum values of Ml. These limits may then
be converted into estimates for the limits of Mw for a specific
physical earthquake fault. When estimating Mw the following
parameters for the fault geometry will be used:

vp

vs
=

1

0.58
, �19a�

� = 3 � 1010 Pa, �19b�

�z = 15 km, �19c�

�y = 1.5�z . �19d�

B. Dynamic phases and moment extrema

It may be readily seen from the equations of motion
above, Eqs. �12� and �14�, that the only nonlinearity is the
frictional function 
i. Under certain conditions this may be
linearized and an analytical solution obtained. The approach
that follows is similar to that of Carlson and Langer �5�, but
further to this, estimates are made of the limits of event
moments for the regimes of v f to be considered.

C. Small events in the limit vf\�

Equation �11� may be rewritten as

FIG. 2. The dynamic frictional function of Eq. �14� with

=0.1.
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� �2

�t2 +
d


de

�

�t
+ 1 −

�2

�x2�e = 0. �20�

For the sake of brevity ta and x* are written as t and x,
respectively. Consider the case of an event, centered at x0,
spanning a length l on the fault. If the average velocity on l
is ē, then

�
x0−l/2

x0+l/2

edx = lē .

Integrating Eq. �20� over the length l leads to

�
x0−l/2

x0+l/2 � �2

�t2 +
d


de

�

�t
+ 1 −

�2

�x2�edx = 0,

or taking the partial differential operators outside the inte-
gral,

� d2

dt2 +
d


de

d

dt
+ 1��

x0−l/2

x0+l/2

edx − 	 �e

�x



x0−l/2

x0+l/2

= 0.

Hence

� d2

dt2 +
d


de

d

dt
+ 1�ē − l−1	 �e

�x



x0−l/2

x0+l/2

= 0. �21�

If e�v f, the dynamic friction, defined by Eq. �14�, may
be linearized as 
= �1−
�+e d


de = �1−
�−e /v f thus

� d2

dt2 − v f
−1 d

dt
+ 1�ē − l−1	 �e

�x



x0−l/2

x0+l/2

= 0.

Assuming a triangular profile during an event with e�x0 , t�
=2ē�t� and e�x0± l /2 , t�=0 then the strain rate at x=x0± l /2
may be calculated as the average of the strain rate in the
positive and negative sense of the x axis about x, �e+

�x and �e−

�x ,
respectively,

�

�x
e�x0 ± l/2,t� =

1

2
	 �

�x
e±�x0 ± l/2,t� +

�

�x
e��x0 ± l/2,t�
 ,

= �
2ē

l
,

and so

� d2

dt2 − v f
−1 d

dt
+ 1 + 4l−2�ē = 0. �22�

This can be rewritten in a standardized form

d2ē

dt2 − 2�
dē

dt
+ �l

2ē = 0, �23�

where �= 1
2v f

and �l
2= �1+4l−2�. Applying initial conditions

of ē=0 and dē
dt =
 it follows that ē is given by

ē =

e�t

�l
sin��lt� . �24�

Here �l=��l
2−�2. The discriminant of Eq. �23� is �l

2 and so
in order for the system to support an event spanning infinite

length �l→ � �, and since �l
2�0 for oscillatory behavior, it

follows that v f �1/2. It appears that there are constraints on
the size of events supported by the system depending on v f.

The event described by Eq. �24� will end at t= �
�l

assum-
ing the blocks all move in unison. This means that all kinetic
energy is lost only to the boundaries of the slip zone to be
stored as potential energy, and the friction, and therefore
would be a maximum moment event. If Eq. �24� is integrated
over the interval t=�0, �

�l
� the average slip of a slipping

block is obtained. The total moment of the event is Ml
=�0

�/�llēdt. Performing the integration

Ml
max =

l


�l
2	1 + exp���

�l
�
 . �25�

If it is now considered that an event may consist of small
sections of the fault, �x*, slipping in series, then the total
moment is simply the sum of n= l /�x* consecutive events

Ml
min = nM� =

l


��
2 	1 + exp���

��
�
 , �26�

where �� and �� indicates the values with l=�x* for �l and
�l, respectively. In comparison with the event described by
Eq. �25�, Eq. �26� describes an event which loses energy in
order to make the event propagate through the system in
space and so it would be unlikely that large velocities would
be attained unless the wave is amplified as it propagates.
This indicates a minimum size event as here energy is also
lost to initiating slip at the boundary of each section. In the
limit of v f →� �or �→0� Eqs. �25� and �26� become

Ml
min =

2l


��
2 , �27a�

Ml
max =

2l


�l
2 . �27b�

D. Large events in the limit vf\0

If the extreme of v f →0 is now considered we know that
the friction drops to 0 immediately as the block starts slip-
ping. The dynamic friction is then linear and independent of
e with 
�e�0�=0. Using this and Eq. �21�, Eq. �28� follows:

� d2

dt2 + 1�ē − l−1	 �e

�x



x0−l/2

x0+l/2

= 0. �28�

Using the same reasoning as in the previous section the
maximum event may be found by considering the motion
over the event length l leading to Eq. �29�

d2ē

dt2 + �l
2ē = 0. �29�

Applying initial conditions of ē=0 and dē
dt =1, the dynamic

frictional drop with v f →0, the solution for ē may be found,
being identical to Eq. �24� but with 
=1, �=0, and �l=�l,
and integrating over this event the maximum moment event
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spanning a length l may be obtained. Also by considering
n= l /�x* sections slipping consecutively in a single event the
minimum moment is found.

As with Eq. �27� the event moment spanning a length l
becomes

Ml
min =

2l

��
2 , �30a�

Ml
max =

2l

�l
2 . �30b�

Comparing Eqs. �30� and �27� it is apparent that there is
significant difference between the scale of dynamics in the
limits of v f →0 and v f →�, the two being separated by a
factor 
. These two limits represent distinct phases in the
system’s dynamics representing large scale and small-scale
stick slip behavior for the two limits, respectively. The
events in the limit v f →� are controlled by the frictional
drop 
 �see Eq. �27�� which causes the events in this limit to
tend to zero as 
→0. In the limit v f →0 the events are not
controlled by the frictional drop, only by the fault length
slipping in an event. Figure 3 is a schematic of the moment
limits suggested by Eqs. �25�, �26�, and �30� as a function of
v f for a fault with l=100, kt=1, and 
=10−4. Three regions
are distinct in the figure with large scale �area A�, small-scale
�area C�, and spanning �area B� moments. These correspond
with the critical transition previously observed for the BK
model using the formulation of Eq. �13� at kc=kt=1 in �2�.
Note, due to the assumptions made, the limits of v f for the
different regions are merely estimates. Using Eqs. �16� and
�18� along with the fault parameters given by Eq. �19�, the
equivalent moment magnitude may be determined as can
also be seen in Fig. 3. Given the size of the fault the moment
magnitudes are necessarily large: the smallest event in the
model requires an event spanning the entire depth of the
fault.

It must be noted, however, that the above analysis does
not give any information as to how often events of a certain
length or moment may occur, i.e., the probability density
distribution �PDD� of moments is still unknown. To deter-
mine such information it is necessary to resort to numerical
techniques.

IV. DYNAMIC PHASE MOMENT DISTRIBUTIONS
AND EARTHQUAKE RETURN TIMES

As mentioned the BK model was previously investigated
�2� with kc=1, and kt=1 �k=1�, and 
=10−4. This study
showed that the BK model undergoes a critical transition
from large scale moments �stick slip� to small-scale moments
�here called creep� with increasing v f.

Here, the moment PDDs are further investigated for cor-
respondence with the theory of Sec. III. Also, the moment
PDD near criticality will be compared to results found by
others, particularly Carlson et al. �4,8�, in the regime kc�1
where quasiperiodic delocalized events are observed. Note
that single block events are neglected in the statistical analy-
sis.

Figures 4–6 show the moment PDDs for three values of
the frictional falloff v f with kc=1. The form and scale for the
distributions changes. It is clear from these distributions that
a transition is occurring with limits confirming the work pre-
sented in Sec. III.

For v f =1 �Fig. 4� events have small moments spanning
the theoretically predicted limits �see Sec. III C� of 1�10−4

for a two-block event to approximately 3�10−2 for a 55-
block event; the largest number of blocks observed to slip in
an event for the experimental data of Fig. 4. The moment
PDD is fitted by a stretched exponential �SE� distribution
with a normalization correction �=3 �19�.

With v f =0.1 �see Fig. 5� the PDD is over a very different
range of values and follows an exponential distribution. The
theoretically predicted limits for moments in this large scale
phase are approximately 0.8 and 200. Given the exponential
nature of the moment PDD, events near the upper limit of

FIG. 3. Schematic of the limits on the moment Ml as a function
of v f with l=100, and 
=10−4. Three regions �bounded by the
arrows� may be observed as a large scale moment region A, a small
scale moment region C, and an intermediate region B of moments
spanning the small and large regions. The equivalent moment mag-
nitudes Mw for a fault defined by Eq. �19� are also given.

FIG. 4. The 100 block systems’s moment PDD with v f =1 is
fitted by a stretched exponential function. The exponent, �, being
0.5 with the scale in the distribution, v0=1.25�10−4. The param-
eter � readjusts the normalization of the probability density
function.
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200 are extremely rare and so have not been observed in
simulations.

The transition between the two phases occurs at approxi-
mately v f =vc and so large scale stick slip �LSSS� occurs for
v f �vc and creep for v f �vc. Section III D predicts a factor
of approximately 
 separating the two extremes of v f and
this is validated here.

It is worth noting that with small event size, as in creep
behavior, one expects and observes a small decrease in the
average shear stress in the system, i.e., the shear stress does
not reduce much below the friction threshold in an event.
This contrasts with LSSS behavior where large events relax
the system far away from threshold. This difference between
the two phases of LSSS and creep was the key to defining
the order parameter of �2� to describe the transition.

For v f =vc�2/3 a power law moment probability density
distribution, with a small large scale excess is observed �see
Fig. 6�. To understand this transition near v f �vc is more
difficult than in the regime of LSSS or creep as the nonlin-
earity of the friction plays a key role in the dynamical be-
havior. It is, however, reasonable to suppose that there is a

region, or point, where events may span across the full extent
of both ranges of LSSS and creep behavior, as was suggested
by theory �see Fig. 3� and seen in experimental data in Fig. 6.
Equations �27� and �30� suggest that the smallest moment
scale is controlled by 
 and the largest by l, which is in turn
restricted by the system size L. This indicates that in the limit
of 
→0 when spanning behavior is observed the only con-
straint on the scale of moments is system size. This is to be
expected of a system at or near a critical point.

Figure 6 shows the moment PDD for an l=100 system
near the transition with v f =2/3. In addition, the moment
PDD of the system with kc=144, and v f =1/6 is plotted,
which is the regime investigated by Carlson et al. �8� that
exhibits delocalized large scale events. It is clear, however,
that with kc=1 there is no longer a sharp distinction between
small and large scale regions. The power law nature of these
large scale events suggest they are not delocalized events.
Contrasting the two moment PDDs, delocalized events are
not simply suppressed they are not present.

The large scale excess of delocalized events are quasip-
eriodic in nature �4�. This property of the delocalized events
can be seen clearly from Fig. 7�a� where the PDD of shear
stress intervals �20� �f between delocalized events are
shown. However, for the regime investigated here �kc=1 and

=10−4� large events are not quasiperiodic. In fact the dis-
tribution of the shear force interval between events with mo-
ment greater than 0.5 is approximately exponential �Fig.
7�b��. This suggests that these large scale events may obey a
Poisson type process, which has been ascribed to large scale
earthquake events �15�. The fitted scale to this distribution
leads to the expectation value of �f being given by ��f�
=4.28�10−2±9�10−4. This is the expectation value of the
shear stress interval between events with Ml�0.5 �Mw

�9.5�.In the terminology of seismology, this is called the
return time. Equations �7� and �9� suggest that

�t = 	q�tq = 	q�f ,

leading to

��t� =
�y
�2�

vp

vs
��f� .

This suggests that the return time for a fault with the prop-
erties given by Eq. �19� is approximately 37 000 yrs for
earthquakes with moment magnitude of 9.5 or greater.

V. DISCUSSION

The derivation in Sec. II provides a direct link between
the BK model and continuum mechanics, hitherto absent
from the literature.

The BK model formulated here is a discretized wave
equation. One must then be aware of numerical issues when
obtaining any solution to the system. In what follows, such
numerical concerns will be discussed. Following this, the
results of infinitely slow driving obtained here will be com-
pared to other results produced at a finite driving rate.

FIG. 5. Shown here is the moment PDD for the 100 block sys-
tem on a log-linear scale. The moment PDD follows an exponential
distribution with scale v0=2.575±0.061.

FIG. 6. This figure shows the moment PDD near the dynamic
transition and where the large scale excess is present. For the dy-
namic transition that demonstrates no large scale excess kc=1, v f

=2/3, and 
=10−4. When kc=144, 
=10−2, and v f �1/6 the large
scale excess is prominent.
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A. Delocalized events as a numerical instability

Previously, the BK model was shown to support a critical
state. Of course, the most prominent feature of a system in a
critical state is a lack of scale, emergent as power law be-
havior. Direct solution of the BK model in most published
studies has largely found to result in a power law distribution
of moments but with an additional large scale excess of
events �Fig. 6� that occur quasiperiodically �Fig. 7�a��,
termed delocalized events. While power law behavior sup-
ports the critical nature of the system, quasiperiodic events
that are not power law distributed suggest a scale in the
system’s dynamics and as such the system is not scaleless
and thus not critical. In addition, these delocalized events do
not span the entire system for very large systems �8�, indi-
cating that the large scale excess does not scale with system
size such that it shifts position, tending to infinity for an
infinite size system. Results presented here suggest that these
delocalized events are a numerical artifact because fixing the
value of the spatial discretization kc to a value where numeri-
cal stability may be expected, kc=1, results in the delocalized

events not being observed. The recurrence time PDD of
events with large moments approximately follows an expo-
nential distribution: the quasiperiodicity of large events is
lost.

The case where kc=1 has been investigated by Hähner
and Drossinos �16� who studied a BK model implementing
their own velocity dependent friction law but incorporating
plastic deformation into the model. Plastic deformation al-
lows aseismic slip to occur, relieving strain in the system,
and an effective friction with memory results. power law
behavior is observed and the system apparently exhibits
tuned criticality without delocalized events as is observed
here. In contrast, a smaller power law moment PDD expo-
nent than expected of earthquake behavior was observed by
them, 1.5, presumably arising from the different friction law.
Other phases are not investigated in their work, however, and
so cannot be commented on.

B. Numerical transitions

There have been other studies of transitions in the BK
system but it is only those transitions associated with tuning
the parameters of the friction that are considered relevant
here. In �12�, de Sousa Vieira noted a transition in the BK
model by varying the ratio of numerical discretizations,
kc /kt. However, in Sec. II it was argued on the grounds of
numerical stability that the numerical signal speeds, �x*

�t* and
�y*

�t* , of the nondimensional equations of motion should be the
same leading to the condition that kc /kt=1. This also reflects
the “thin” geometry of the BK model where the shear strain
of the elastic medium is localized near the fault as in real
earthquake faults �17�. Further support for such a choice
comes from results of the Olami-Feder-Christensen model
�18�, which is based on the BK model and shows the best
correspondence with the observed power law moment PDD
exponent of two when kc=kt. The “transition” observed vary-
ing kc /kt is considered to be a numerical artifact and, as such,
not relevant. This is because it is expected that the solution to
the system should be independent of the discretizations used,
otherwise the solution may be unstable or prone to error.
This is, in part, supported by the author herself who notes
that the regime of the BK system demonstrating a partial
power law with large scale excess has not been observed in
experimental systems. However, de Sousa Vieira, by varying
the numerical ratio to one, kc /kt=1, the value favored here,
revealed behavior that has been observed in laboratory ex-
periments of homogeneous systems: an exponential distribu-
tion of events sizes. From the above this is thought to be the
true physical behavior of the system for the same friction
parameters. If de Sousa Vieira had explored the parameter
space further, a power law moment PDD without delocalized
events would have been observed.

C. Stable and unstable motion?

As mentioned above, the BK model transition observed
between the stick slip phase and creep phase has been inves-
tigated by Vieira et al. �10� utilizing the CL friction law but
with a different value of kc /kt�1 and with a finite driving

FIG. 7. �a� The delocalized events of the large scale excess are
quasi-periodic in the sense of the shear force increments. Here the
intervals between the 2509 events out of 106 with moment �10 are
recorded. �b� The intervals between events with moment �0.5 de-
viating from the power law on the small scale of Fig. 6 are re-
corded. The fit to this distribution of intervals is exponential.
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velocity. Increasing the friction parameter v f the system is
seen to undergo a transition to continuous motion at v f �1.
This coincides with the same transition point to creep behav-
ior as found previously by us in �2� using Eq. �13�. Vieira et
al. describe this transition as, with initially high v f, being in
constant motion �fluid phase� and as the stick slip phase is
approached by decreasing v f, stationary states appear and
begin to percolate through the system at the transition point.
In what follows, it is shown that in addition to a fluid phase,
a creep phase may also be observed at a finite but small
driving rate.

Consider why the system may be in a fluid phase. Assum-
ing there is no plastic deformation, a point on the bulk sur-
face in contact with the fault must keep pace with the driving
rate on average, otherwise there is a potential energy accu-
mulation in the bulk. There are two classes of motion that
allow the block to keep pace with the driving rate, �, un-
stable �stick slip and creep� and stable �fluid�. Fluid motion
cannot be observed in the infinitely slowly driven system
studied here. What follows seeks to establish a condition to
determine whether stable or unstable motion is to be ex-
pected at a finite driving rate. Such a condition, could estab-
lish if creep and fluid motion may be observed as separate
phases for the same driving rate.

The velocity of the system with depth �z and shear modu-
lus � at a point in space x along the fault and in time t is
given by v�x , t�. The average velocity of the system in space,
over its entire length L, and time must be the same as the
driving rate on average over a long time T, and so it follows
that

1

LT
�

0

T �
0

L

v�x,t�dxdt =
1

T
�

0

T

V�t�dt = �V� = � .

The stable fluid motion results in V�t�=�. The creep motion,
however, must result in a time varying solution to V�t� given
its unstable nature. Slip events are simplified to have rectan-
gular profiles in a velocity versus time plot �see Fig. 8�, and
so the ith event has a duration, Di, and maximum velocity,
Vi. The resulting slip from this event is proportional to the

moment Mi=��zLDiVi. Thus it is expected that

1

T
�
i=1

N

DiVi =
1

��zLT
�
i=1

N

Mi = � .

The average moment over the N events is 1
N�i=1

N Mi= �M�.
Thus

N

��zLT
�M� = � .

For a system operating at a point in parameter space in the
creep phase, however, the moment distribution should be in-
dependent of the driving velocity � assuming the driving is
slow enough for events not to overlap, also indicating that
the duration should be unchanged. It is then expected that the
average moment �M� would also be independent of �.

In a time T there can only be a finite number of creep
events with average duration �D�, otherwise it would be in
fluid motion. This imposes the constraint for creep motion
that the number of events N with duration �D� must be less
than the time period T, or

N�D� � T .

Hence

�L�D���z � �M� . �31�

For a system operating at a point in parameter space of the
creep phase, varying the driving rate � allows this condition
to be met or not.

In the limit of infinitely slow driving the condition is au-
tomatically met if �M� is nonzero, which it is for the creep
phase moment PDD. Note however, that from Eq. �27�, �M�
is proportional to 
 in the creep phase. This dependence
indicates that if 
→0 then �M�→0 also: the condition for
creep would not be met, suggesting a transition directly from
fluid to large scale stick slip as found by Vieira et al. Yet
experiments such as those carried out by Johansen et al. �11�
indicate the existence of transitions from fluid to creep and
then to stick slip in solid-solid friction dynamics. The above
analysis suggests that with decreasing v f, a finite nonzero
value of 
 and at an appropriately small driving rate there
may be two transitions: the first from fluid to creep; the
second from creep to stick slip as observed in experiment. A
natural conclusion from this is that 
 in the model here
should be nonzero. However, with a faster driving rate, the
system may undergo a transition directly from fluid to stick
slip.

VI. CONCLUSIONS

The Burridge-Knopoff �BK� model has been derived from
the theory describing an elastic bulk in contact with a rigid
frictional surface showing that kt=1. Given the models ori-
gins from a wave equation, it has also been argued that to
meet the Courant condition, kc should also be equal to one.
Previously, for the discretization kc=1, the BK model has
been shown to exhibit a critical transition.

FIG. 8. Schematic of the total velocity in time for the unstable
creep events.
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Analytical estimates were made of the limits of event mo-
ments in the large scale, small-scale, and critical phases.
These estimates successfully reflect the differing scales be-
tween the large scale and small-scale phases. In addition,
these estimates also correctly indicate the existence of a re-
gime with event moments that span from the small-scale to
the large scale phases’ extreme limits. This does occur when
the system is near the critical transition.

Contrary to results for the BK model with kc�kt, the BK
model’s power law moment probability density distribution

�PDD� for kc=kt=1 was found not to exhibit large scale qua-
siperiodic delocalized events. The PDD of intervals between
large events was found to be an exponential distribution cor-
responding with behavior expected of critical systems and
earthquakes.
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